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PREFACE

In January 1970, the personnel of the Gravity Boiling
Project included six new people, all generally unfamiliar with
zuber's hydrodynamic theory of the extreme boiling heat fluxes.
Since a great deal of the work we do depends upon the concepts
that make up this theory, some remedial work was required. We
therefore agreed to meet for three one and one-half hour infor-
mal lectures,'first to review some of the underlying wave thécryg
and then to trace Zuber's predictions.

Vijay Dhir then undertook to put these talks into order,
filling in the missing words and equatiéns, correcting errors,
and improving some of the logic. We hope that the result will
serve in the future as a kind of instructional package for other
people who wish to begin work with the extreme pool boiling heat
fluxes.

The first Section of the report (pages 1 through 19) pro-
vides a brief background in the Taylor and Helmholtz stability
of waves. This discussion is slanted toward an application to
the hydrodynamic theory. Nevertheless, the reader with a back-
ground in this material should comfortably be able to begin dir-

ectly in Section II.

J. H. Lienhard
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DYNAMICS AND STABILITY OF SMALL GRAVITY AND CAPILLARY WAVES*

Gravity Waves

Wave Motion

A wave motion of a liquid acted upon by gravity and hav-

ing a free surface is a motion in which the elevation of the

free surface above some chosen fixed horizontal plane varies.

We shall restrict our remarks to two-dimensional motion for

the present.

Fig.

With reference to Fig.

1 Wave Motion on the Free Surface of a Liquid

1l we shall take the axis of x

be horizontal and the axis of y to be vertically upwards;

motion of the free surface governed by eguation (1)

n:

is called a simple harmonic progressive wave where k =

a sin{kx - wt) (1

27

*A good general reference is L. M. Milne- Thomson, Theore

Hydrodynamics, [1].
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the wave number, and ® is the frequency.

2. ZXinematical Condition at the Free Surface
Considering a fluid of depth h in which waves of height
n = n(x,t) above the mean level are propagated, the eguation

of the free surface is

As the surface moves with the fluid, following a fluid particle

we can write

jwl

no_ 9an 3N
= 9.1 4 Sl = {3
Dt A craa (3

L

Assuming a linearised theory in which squares and products of
variable parts of all gquantities and their differential coeffic-
ients are negligible, and, in our case taking the slope, %%

of the profile to be small, we get

Assuming the motion to be irrotational we can define a potential

function, ¢ ,and a stream function,V, so that

@
3
]
o3
<
|
@
Ay

(91
e

Equation (5) is kinematical surface condition for wave pro-
files of small height and slope.

Now let us choose a complex potential of the form

W= ¢ + iy A cos(kz - wt)

il

A{cos (kx-wt)cosh ky-ilsin(kx-wt)sinh kyl!




and determine what A must be to fit the boundaries. The poten-

tial and stream functions for this potential are

-
I

A cos(kx - wt) cosh ky

<
I

-A sin(kx - wt) sinh ky
At the surface Y becomes
Vsurface = —A sin(kx - wt) sinh kh

where we have assumed y = h + n = h since n 'is small. However

’;«.«,,2
R

n = a sin(kx - wt) {

Substituting equation (1) in (5) we get:

aw/k
A = SInk kn
Thus

ac ‘
® = SIAh %R cos{kz - wt)

[oa

We have derived this result from purely kinematic conditions and
no hypothesis has been made as to conditions above the wave pro-

file.

3. Pressure Condition at the Free Surface
Let i be the pressure inside the liguid and po,the pressure
just outside. Assuming the fluid to be inviscid, we can write

the equation of motion as




or
+ TGE20 = <T(py - pan)
ZuTp) = Py pPaN

or

o
gm
._{,,
o
il
o

V(p 2% - +
(p =& = PN
Integrating this with respect to position we get
*2

3¢ _ o -
P 3% pgn + 5 W+ p; = c(t).

c(t) can be taken to be independent of t by incorporating any time

variable in %% . Also if pg be the constant outside pressure act-
ing at the interface, we can absorb it in ¢ without any loss of
generality and finally write
3¢ a
P; ~ Pgo p(at gn + =) (
-2
Neglecting L%—which is negligible in small waves, we obtain
9 N
Pi“PO=D(§%~gﬂ) {2)

The interface between two fluids which do not mix behaves as 1
it were in a state of uniform tension. This tension--called sur-
face tension--depends on the nature of the two fluids and on tem-
perature. We now wish to see what effect this tension has
on p. Figure 2 shows the surface tension and pressure forces act-
ing on an element §S of arc of a cross-section of a cylindrical
surface forming the interface between two fluids. If 3§86 is the
angle between the tangents at P and S, then resolving the forces

along the normal at P gives approximately

-poés + piﬁs + 066 = 0




or
- _ oé®
pl pO - g
cr
p - p. = 9;
O 1 RXY

where RXViSthe radius of curvature. Using the expression for

\1@,@5& 5%5

//ﬁ S@

Kh )

2 Forces Acting on the Interface between Two Immiscible

g P

Fig.
Fluids
R in terms of n,
Xy azn
° BXZ n 82]'] o
Pn = P: = N O (9
o i /1 . Bn.23/2 8XZ
\& oy
since
an
3% <4

Substituting equation (9) in (8) we get

2

n 90
= po{sv — 9n)
X2 ot

(o34
-
tae)

-

Q2

In the simplest case in which we neglect the surface tension, we

get at the free surface




= - gn = 0 (11

Notice that this equation is independent of fluid density
and gives surface elevation when ¢ is known.

At the free surface

(I) = ¢(X,h+ﬁ,t) = (f)(x,h,t) +n(w) + .
ay Y=h

As n 1s small, the second term on right hand side can also be

neglected and we get at the surface
o = ¢{x,h,t)

Therefore equation (11) becomes at the surface

¢
n = 5
. g 0 ly=h
or
9 s .
‘a‘%? T =
y=h
and
2
870 _ . on - P
—a—-—t-—- n g -§_E O [
y=n

4. Surface Waves
Combining the kinematical and pressure conditions,

we dget

o
Qo
<
|
o
[
i

Substituting the known values of ¢ and ¥ in egquation (14) we get

the wave speed, cz;

—



ce o= 9— tanh kh

Now taking special cases
(i) Waves on a very deep fluid (h>>)):

In the Limit as kh-=, tanh kh - 1, therefore

oY

(ii) Waves on a very shallow fluid (kh<<1}):
In the 1imit, as kh becomes small
2 1+kh-1+kh

= 9 iFxh-ivxkn
c %X I+kh+lokn ~ 9b

or
c = Vgh

Exanple Tidal waves at sea (ghallow waves)

Typically: a = 3 ft
w = 4m rad/hr

A

200 miles

Il

h 12,000 ft

Therefore,

Q
il

¥32.2%12,000

622 ft/sec

Thus for very deep liquid (A/h<<l) ¢ is proportiocnal to/i and for

shallow liguid (A/h>>1) ¢ = Ygh, i.e. ¢ tends to a constant

value which it cannot exceed. The results are shown in Filgure 3.
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Fig. 3 Effect of Depth of Liguid on Wave Velocity

5. Gravity Waves in Two Fluids (Waves at an Interface)
Consider a fluid of density, ¢’ and depth, h', flowing with
constant velocity,U',over a layer of £fluid of density,p
depth,h,which flows with constant velocity,U, the fluids being
bounded above and below by rigid horizontal planes as shown in
Figure 4.
To study the gituation that a wave of small elevation
n = a sin(kx - wt) may be propagated at the interface with velo-
city,c, we impose on the whole mass of fluid a velocity,c,opposite
the direction of propagation; thus reducing the profile to rest

and changing the velocities of streamsto U'-c and U-C.




Fig. 4 Interface between Two Different Fluids Flowing with
Different Velocities

The complex potential for the lower fluid is

a(U~-c)

W = ~(U~c)z - Sinh kh cosk (z+ih}

P
]
(a1
o

This complex potential satisfies the condition that streamline
V=0 corresponds to n = a sin kx. Alsc the potential function ¢.
and stream function,y,satisfy Laplace's Equation.

Similarly we write the complex potential for the upper fluid

by replacing h with -h':

Vo— o P a(U'-c) B {
W {Ul~c)z + EEKH"EHT'COSk(Z ih') {

%)

1
bk
-,

Therefore

4 = - (U-c)x - 2U=C)

Ik %R coskx cosh k{y+h)

6! = -~ (U-c)x + E%%%iiﬁ% coskx cosh k(y-h'")

oY

Q2
-

_ ka(U-c) _. ..
= ""(U“"C) + SinhR kR sinkx cosh k(Y"‘h‘)

o
Ii
5

3¢ ° ka(U'~c)

- - - - o =AY T g o] k{y~h’
= e = (U'~c) Trh TR sinkx cosh k(y~h')
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Neglecting terms containing a2 and applying the condition that at

the interface}y = n and n<<h, we get at the interface

2 - (g-c)? [1-2kn coth kh] (17)

ul =
2 2 . . (1
u' = (U'-c)® [1+2kn coth kh'] {18}
Now applying Bernoulli's Equation at the interface for the two
fluids we have
v 1 B0 < L — {(16%
p’ o+ 5 pfu + p'gn = constant (19

and

.
e

P+ % puz + ogn = constant

But the pressure must be continuous at the interface (assuming

e

no surface tension), so

Subtracting equation (20) from (19); substituting values of u?

and u'? from (17) and (18) and assuming that free stream kinetic
energy per unit volume for the two streams is the same, we get

the condition

p"k(U’—c)2 coth kh' + pk(U-—c)2 coth kh = g(p~p')

If U =U' = 0 [both fluids stationaryl, we get
02 _ glp=-p") (213
= k(p coth kh + o' coth kh") T
If the depth is great, i.e. kh and kh' >> 1, we get
.2 _ glo-p') S




-1 ]

The condition for stability of waves is that ¢ should be real
Thus p must be greater than p‘?ife, the heavier fluid must be

underneath.

B. Capillary-Gravity Waves

We proceed with the assumption that fluid depths are large
and the waves are unsteady and of small amplitude.

We define:

©=Ux + ¢ and P, = pg * P
where
¢ = perturbation potential function
U = free stream velocity
P, = static pressure

p = perturbation or disturbance pressure

As the governing equations are linear under small wave assumpticns,
we can treat one component of the Fourier spectrum, throwing away

others, and write for ka small

s,
]
{a

s

N =g expli(wt-kx)]

The complex potentials that match this form of n are

e,
[y
s

¢ = i(U-c)a explky + ilwt-kx)]

¢' = -i(U'-c)a expl-ky + i(wt-kx)]

s
jas]
[$;]

These potential functions are correct at infinity and at the

i
RS

e
[

t

face,and they satisfy Laplace's Equation.

Writing the pressure equation




® 1?2
“gn g Tzt

R . > > 3
and defining u =U + u = V9

3

. 2 .
Neglecting terms on the order ofu"we rewrite the pressure sgua-

st

tion as

3¢ 1 2 Po
-gn + —— + = U® + uU = — + B
M T3 " o P

2 .
U~ + constant.

D

But in the free stream %? =

Hence the pressure equation for the lower fluid becomes

pl=-gn + ¢ + ¢,Ul = p (27)
Similarly for the upper fluid
pil-gn +6f +¢ 7 U'] = p’ (28)
Subtracting (28) from (27) and substituting values for @tp ¢é;
¢ s ¢, ,we get at the interface,y=0
(p"=-p)gn + p[iﬁl%gﬂﬂ - {(w=-kU)UIn + p“[iﬁ:%giﬂ& - {w~-kU"}UYn =p-p’
But ' } . an ) ,
p-p’ = —[§;§ + ﬁ;;] and ny = EQE = -k*n

Here we have assumed that the effect of transverse surface tension

is additive to the effect of axial surface tension. Therefore

ki
(o-0")g - 2 [(w-x0)?] - %;{(w_kuﬂ)21 = k% + —2—  (20)

[
k

1
Multiplying throughout by E?p+p“) and solving for the velocity |

% = c, we get




R

o g p-p' ., ko _ A - 2 UUT) - (30
i o+p? k o+p! p+p! k(p+p’}Rtrﬂ {Q*oy!x i
L [ et e v -
i ii iii iv v

JL A RN

Eguation (30) is a very basic result to which we shall cften refer.
The significance of the terms on the right hand side is:
(1) Mass mean velocity.

(ii) Gravity term acts to smooth citthe irregqularities whenthe

3

i

heavier fluid is below the lighter fluid, and enhance
irregularities when the light fluid is below.
(ii1) Axial curvature acts +to smoothaut the irregularities.
(iv) Transverse curvature acts to augment the irregularities

(v} 1Inertia term acts to augment the irregularities.

C. Stability of Waves

We are interested in stability of waves of the

pvd
&

pe
n o= ae“ikx eikct

n will grow without bound if ¢ is anegative imaginary number or
includes a negative imaginary term. Thus when the term under the
radical in equation (30) passes through zero (i.e. goes from posi-

tive to negative), k assumes its critical or maximum stable wvalue
2T

k. = .
C AC
Actually the physical system will collapse in the optimum
or "most dangerous" wave length, Ag = %g . This is the value of X,

for which |w|is maximum (i.e. %% 0) and for which n grows most

i

rapidly.




1. Taylor's Instability
When two different f£luids having a common plane boundary

are accelerated in a direction perpendicular to the boundary,

any small irregularities in the boundary will tend to change in

shape. If the acceleration is directed from the more dense to
less dense medium, the irregularities will tend to smooth out:
if the acceleration is directed from less dense to more dense

medium, the irregularities of the interface will tend to grow.

This effect is known as Taylor's Instability.

Now from our previous analysis we calculate the critical

and most dangerous wave lengths.

Putting U = U' = 0 in equation (29) and assuming no curv-

ature in transverse direction[Rtr = « elementary Taylor's Insta-

7
bility] we get

-pt.. ok
g(pp!)+ {

€ Tk ‘pro p+p”

Here we have taken the heavier ligquid as below the lighter 1i

gquid i.e. p>p'.

2

Putting c“ = 0 we get
k. = glp~p")
c - g
or
27
‘e = T5To0 (3
o

For k<kg, the R.H.S. of (31) is negative and the interface is

unstable.
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Example: Calculate critical wave length for water and air interface at

normal temperature and pressure:

1.985 1bf sec™ /et

' =0.00234 1bf sec /ft
c = 0.005 1bf/ft

i

Therefore
217
>‘c = = 0.057 ft = 0.6884 in
32.2 x 1.933
0.005
Now setting
dw d(ck) -0
dk dk
we get
. =t | 9P
a" e o
\/ 3
or

= =3 A\ . 33
RN = AER &=
o}

Actually the system will collapse with this most dangerous wave length. For
the water and air interface in the preceding example this value is

}\d = 1.18 inches

2, Helmholtz Instability
This involves the study of instability of the interface when
either of the two fluids is moving in a direction perpendicular to the

acceleration of the interface, the flow of a gas with velocity U' over

water, for example.

Here we discuss either of the two situations:
) Surface Tension Neglected

(ii) Gravity is Neglected

(i) Surface Tension Neglected: Eqguation (80) reduces to the form

c =PV 4 fgp-p' _ pod UG
o +p' kp+po' (@ +0)




-6

Setting the term under the radical sign eqgual to zero we get

2512

= P g
kc st U’Z
¥ ""I2
A = 2pr2 U (34)
02 _p' J
and setting duw = 3(ck) _ g
dk ok
2_nv2
- pT-P g
we get kd 550" U’2
oxr
B 27r(2o.o“>‘U“2 - 2 3 o
}\‘d - p2wpn2 g c \2o

Example: Obtain the critical and most dangerous wave lengths for

air moving over a lake with a speed 30 ft/sec.

21 % 1.935 x 0.00234 900 _
c (1.935)2 32.2

<
[N
(o]
oo
h
s

>)
it

Ag = 0.416 £t ~ 5 inches

Thus Helmholtz instability only contributes short wavelength
choppiness to the lake's surface.
{ii) VNeglecting Gravity: Rewriting equation (30) with U = 0,

infinite transverse curvature,and zero gravity we get

p‘U; . ko pp“U“z
s Ky p)
prp p+p (p+pu)

Cc =

Setting the terms under radical sign egual to zero we get
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pp' yr2
ke = t3p7 T
or
2T (p+P') o
- [
¢ pp yr?
and setting
dv _ o
dk
we get
2 pp’ U'2

D. Three Dimensional Cases

All our previous analysis was based on two dimensional

waves

as we neglected the effect of transverse curvature.

Al-

though the transverse curvature effect makes the problem three-

dimensional, still a two dimensional analytical model can be es-

tablished to describe this.

The effect of surface tension along

the curvature in the transverse direction is same as an addition-

al component of pressure acting to push the interface

inwards.

Consider a cylinder of liquid--say a jet moving with a

velocity Ug, as shown in Fig. 5. Ug

without any loss of generality by moving the frame of

can be set egual to

Lero

reference

along the jet with the speed of the jet, and we write

2
p-p' = U

a‘n _ .
- g ) Ap, . expli(wt-kx)]
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Fig. 5

where a stationary component of transverse pressure has been
added to both sides, and

Aptr = amplitude of transverse pressure oscills

expli(wt-kx)] denotes disturbance effect

0

- BRSO N
Fia at the peaks to moy et

The transverse pressure ranges from

the troughs, therefore it has an amplitude given by

1, © o 1 _R+a~R+a ca
b, = 3lazz - mg) = 31 ] & =5
tr 2 R-a R+a 2 Rz_az Rz
Substituting all the desired values in equation (30) we get

- W g_ +kg _ O
c = = =+ 0 =z
k \/k o kpRz
But g = 0 in the jet. Therefore we get,
ko g
C =\ - =,
e kPR
The critical value of k is +t+hus
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or

Q
o%)

The c¢ritical wavelength is equal to the circumference of the
jet in this case.
Similarly we can get the most dangerous wave length by

putting g% = 02

_ _2_/_0.816
Ccr

X, = V6 TR = 7.7R (3

However, ourdeep watex assumption is not valid here as the

jet is not really very deep. 1In this case R kg is not >>

Rayleigh [2] analyzed this problem without using the deep

water assumption and got

A, = 27TR

and

>
Il

o0

9.016 R {40}
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IT. THE PEAK AND MINIMUM BOILING HEAT FLUXES

A. The Model

Figure 6 shows a typical plot of heat flux against liguid

Various boiling regimes are also shown.
- . ) N 1] 3 i o
jf~— Region|Transiticn Film

lof 'ets . . . .
water on g céﬁ— $ boiling b0111ng

a flat ]umns | regime req}me -

plate . ' / 'meg

H

/

superheat.

Bt
Lle vy /

™
1
i
i

£
J

/dé/—— Bo}li“ng bejim‘v \i}’— Y min
. |

e 1 I {
O
° bl 10" 10°

(Twait - Teat,) °F

‘a\

Heal flux. q/ X 10

Fig. 6 Typical boiling curve and regimes of boiling

Consider boiling in the transitional boiling region de-

noted by point A (about 300°F above saturation temperature for

water at one atmosphere pressure). The spikes of ligquid get

close to the surface and evaporate rapidly generating a lot of

vapor. The liquid vapor interface is hydrodynamically unstable
because the acceleration is directed from the vapor to the li-

guid. Figs. 7a to 7d show how the liquid vapor interface behaves

in the transitional boiling region.




-21~

- Liguid -
i va E 9771’-', /—’77/ - S e L

Fig. 7 Typical Interface Shapes in Transitional Boiling

7a The interface has random perturbations distributied over a
spectrum of wave lengths.

7b  The wavelength near the "most dangerous" one is the first to
achieve a finite amplitude. Therefore, as a result of
Taylor instability, interface takes a finite geometrical
shape.

7¢  The interface consists of spikes of ligquid and of rounded re-
gions similar to cylindrical bubbles which rise intc the
liguid. In their downward fall, the spikes approach the
heater surface and rapidly evaporate, causing an explosive
flashing to occur at that point.

7d As the minimum heat flux is approached, the interface stabi-
lizes into a regular Taylor unstable wave form. As a row
of bubbles is released, an unstable interface is formed
again. The downward flow of liquid, instead of occurring in
spikes, will be formed as the trough of the wave. Therefore,
successive rows of bubbles above the wave will be displaced
by half a wave length.

7e Near the peak heat flux, the rate of evaporation is very high.
The release of bubbles appears like vapor explosions. The
interface rushes towards the surface, but due to rapid evap-
oration, it is pushed back violently and vapor is released
in the form of explosive jets. The vapor speed at which
jets stabilize is given by Helmholtz instability.

The strategies we shall follow in predicting Tnax 304 dpin =
the limiting heat fluxes at either end of the transition regiocn --

will go as follows:
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a. Prediction of Peak Heat Flux (q,.. J):
1. Assume a geometry of vapor outflow (jets).
2. Find U for which jets become Helmholtz unstable.
3. Pind amount of heat flux, g, required to generate enough

vapor to give this U, in this geometry.

g

b. Prediction of Minimum Heat Flux (gp;,):

1. Assume geometry of bubble pattern.

0]

2. Estimate the minimum frequency of wave consistant with th
"most dangerous" wave length,Aj.
3. Find heat flux, g, consistant with vapor outflow reguired

to give this frequency.

B. Minimum Heat Flux on a Flat Plate

1. The Geometry, Figure 8a shows the shape of interface in the
minimum heat flux range. The wave which achieves the finite
amplitude is the "most dangerous” one. The bubbles that are
forming or leaving the heater surface are spaced a distance

Ay apart. Figure 8b shows top view of the bubble formation

on the flat plate heater. Sqguares show the bubbles that are form-
ing, whereas circles show the bubbles leaving the surface. As

the bubbles separate at the nodes, we can safely assume them to

A
be spheres of radius Zg .
As is seen from Figure 8b, there is one bubble of volume
Ag 3 A, 2
d

(41 (

) ft3 per cycle per (—é) ftz.
3 4 2




(a) (b)

Fig. 8 Bubble pattern in minimum heat flux region.

Therefore,

4 3
fare 1 . Ixel - I £3
volume ux = —35 = T5 D B CAT Y
bo1/a 2g? P 1209 rdeec (41)
where fb = frequency at which bubbles leave
heater surface.
2. Freguency, Taking the rate of penetration of the vapor

region into the liquid the same as that predicted by Taylor'
stability, the relation between the frequency of bubble release

) d (
fb’ and the rate of penetration of the 1nterface,5% , then becomes

Lewis [3] observed experimentally that the amplitude;nycf the
wave increases at an exponential rate until it reaches the limit of

linear wave behavior at n = 0.4 Ag- bDuring the exponential




DL

£

growth, the disturbance amplitude, n,increases from an infin

bt

25

tesimal value to approximately 0.4 XAy. Zuber [4] averaged i@

2]
[
Loi

overthis value and he got,

e 0‘4Ad 0-4Xd
Eﬁ =0 ik f %% dn = 0. 4x f iwmayndn
dt cFTa 0 =40 -
= (.21 Wnax Ad
Therefore,
fb = 0.21 wmax

Later on Berenson [5] showed that Zuber should have time aver-

d . ;
aged a% rather than averaging over n. Such an average cannot be

done because of limited information. He therefore noted that the
result would be of the form

f, = ibwm

b ax

where b is determined experimentally.

3. Minimum Heat Flux (dpin).

q... = (Latent Heat Transgort)(Volume of Vapor)
min Unit Volume Area X Time

T

= pg hfg 0.2 i (Umax -I-i }\d {43}
From Eguation (33)
_ 2mV3
T =)
Pe—0
e
and from Equation (31)
5
. k g(pf—pg) de.
W = -1 -
max dy peteg PetPy




Hence
o 2n % 5;2_ (pf-—pg)g_
min = 0% Pq79 12 oy |3 P
—
_ o T2 afE 409 (PemPg)
= PgPfg 30 4/ 3 2
E (PP )

ogl{pe=p,)
= 0.354 P 4) = "f g’

o,

L

frace
L

h
g 'fg 2
(pf+og)

Zuber got a value of 9nin which is half of this value. The

basic difference lies in the fact that he assumed two bubkbbles

2
were released in an area, Ay, whereas we claim that four are release

The matter is not important, though , since Berenson shows that th

experimental constant must be 0.09 instead of 0.354.

C. Peak Heat Fluxes on a Flat Plate

-

1. Geometry, Figure 9a shows the form of the jets generated
from the heater surface at peak heat fluxes. Figure 9b shows
the top view of such jets on a flat plate heater. The spacing
of the jets is given by Taylor's instability and the wave length

at which the jets become unstable would be the shortest one

that would be Rayleigh unstable. Helmholtz instability will give

the critical speed of such jets.
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(a)

Fig. 9 Spacing of jets in peak heat flux region.

. . , 2
There 1s one jet in an area Xd ;, therefore,

kd 2 2

Area of outflow of vapor = W(TEJ = i% Kd
. o i 2
Area of inflow of liquid = (1 - Ig) kd

Hence, by continuity (PAU = constant)

2 Ty _ 2 q
ogUsrg (1 = 1380 = pgUghy 16
or
T
Yt _°g e
U Q T (il
f l-—
J 16
2. Critical Velocity of Jets. The shortest wavelength at

which jets become Rayleigh unstable is given by equation (40) as

AH = 27R
_ e ta_a
...'n’4...2
or
4
kH=T




But Ad from equation (33) is

2m V3
[g(oe—p)

T

H ™3 Vo

hg =

therefore,

o
PN

o0
e

Now substituting the critical wave number from eqguation (46)

into equation (30), we get the critical velocity U of the jet con-

gc
sidering wave propagation velocity to be zero:

- T o N
y = Y2 479 (P£7Pg) \]1 + 2 L ) | (47)
gc = /1 73 o 2 PE 1 4 pg’ | /
9 Pe

where the term it brackets is % 1 at low pressures and % 1.13

at critical pressure.

3. Maximum Heat Flux.

A
dmax = Pgheg 75 Uge
where
A = £ the jet = —— A,2
g - area 0of the jet = 1€ “a
A = area of the heater subtendedbyone jet = kﬂz
therefore,
q ="~ p h 7/ P R .
max 1543 9 f9 P2

g




DB

1/2
Apax = 0-119 07" The

e
e 9]
P

/55 Togpg)

Borishanski [6] obtained an experimental expression for qmax:
_ - 1/2 4"/'—'—(’——""“
qmaX = 0.13 pg hfg 0gipf pg)

D. Cylindrical Geometry

To predict the peak and minimum heat flux on a cylindrical
heater, the effect of finite transverse curvature has to be
taken into account. Figure 10 shows film boiling near the
minimum heat flux on a horizontal cylindrical heater as assumed
by Lienhard and Wong [7]. The vapor blanket surrounding the
heater is assumed to be sufficiently thin that the smallest
radius of interface is negligibly larger than the radius, R,

of the heater.

Fig. 10 Interface gecmetry of minimum heat flux on a horizontal
cylindrical heater.
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A simple two dimensional model can be used to find the
"most dangerous" and critical wave lengths with the ef-

fect of transverse curvature treated as an additional pressure

difference component, Apy...

o Chen
Aptr = ‘Z‘—sz n (a4
The volume flux of vapor is
ha3
vapor flux = fb Egéx—-%;(jg
d
Kdz
= £, 78"
And the bubble frequency is £, = biw . as in the case ofa

flat plate . Therefore, if we follow Zuber for the moment and set

b = 0.2 rg?

9min T pghfg 0.2 1w % T8%

i

0]

ot
H

Frem equation (30) after substitution of eguation (4%) and :

. dw
ting == = 0, we get
dk

— 21 V3
ha T =
ﬂdzfizﬁgi s L
o 2R2
Thus
2
Q(Df"‘p ) [s] kd
: g’ - o]
w = -i v/kd +
max N‘ pf+og pf+pg (pf+pq)2R2
and
~
2 b e PEPg L o 1/29(emg) 1 13/ P9
min T 60 (29 p+p0 + 2 [ o * 51 - TR (50)
£ g (pg+Pg)R 2R

Equation (50) represents existing experimental results well if we

use b = .0525 instead of 0.2. The result will be +o replace
m2 4/3/60 with 0.057 (see [7]). |

The reader interested in additional work on both gy and

dmin On cylinders should consult references [8] and [9].
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APPENDIX A

Nomenclature
A surface area of the heater
Ag area of wvapor jet
a amplitude of the wave
c wave velocity
fb frequency of bubble release from heater surface
g acceleration due to gravity
h depth of the fluid
hfg latent heat of evaporization
k wave number (%;)
K critical wave number
kg "most dangerous" wave number
ky Helmholtz critical wave number
P pressure
g heat flux

dmax peak heat flux

Imin minimum heat flux

R radius of cylindrical heater

ny radius of curvature in x-y plane

Rir radius of curvature in transverse direction
t time

U free stream fluid velocity

Ug velocity of vapor jet

Ugc critical velocity of vapor jet

u velocity component in x direction

v velocity component in v direction

W complex potential
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z complex number, x + 1y
Greek Letters

APty amplitude of transverse pressure oscillations

n wave height above mean level

A wave length

X critical wave length

kd "most dangerous” wave length
XH Helmholtz critical wave length
o density of fluid

PErPg density of saturated liquid and gas, respectively

o surface tension

¢ potential function
Y stream function

w frequency
Superscript

prime denotes upper fluid properties
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